Extensions 1→N→G→Q→1 with N=C32 and Q=C2xC12

Direct product G=NxQ with N=C32 and Q=C2xC12
dρLabelID
C3xC6xC12216C3xC6xC12216,150

Semidirect products G=N:Q with N=C32 and Q=C2xC12
extensionφ:Q→Aut NdρLabelID
C32:1(C2xC12) = C4xC32:C6φ: C2xC12/C4C6 ⊆ Aut C32366C3^2:1(C2xC12)216,50
C32:2(C2xC12) = C2xC32:C12φ: C2xC12/C22C6 ⊆ Aut C3272C3^2:2(C2xC12)216,59
C32:3(C2xC12) = C6xC32:C4φ: C2xC12/C6C4 ⊆ Aut C32244C3^2:3(C2xC12)216,168
C32:4(C2xC12) = C3xS3xDic3φ: C2xC12/C6C22 ⊆ Aut C32244C3^2:4(C2xC12)216,119
C32:5(C2xC12) = C3xC6.D6φ: C2xC12/C6C22 ⊆ Aut C32244C3^2:5(C2xC12)216,120
C32:6(C2xC12) = C2xC4xHe3φ: C2xC12/C2xC4C3 ⊆ Aut C3272C3^2:6(C2xC12)216,74
C32:7(C2xC12) = S3xC3xC12φ: C2xC12/C12C2 ⊆ Aut C3272C3^2:7(C2xC12)216,136
C32:8(C2xC12) = C12xC3:S3φ: C2xC12/C12C2 ⊆ Aut C3272C3^2:8(C2xC12)216,141
C32:9(C2xC12) = Dic3xC3xC6φ: C2xC12/C2xC6C2 ⊆ Aut C3272C3^2:9(C2xC12)216,138
C32:10(C2xC12) = C6xC3:Dic3φ: C2xC12/C2xC6C2 ⊆ Aut C3272C3^2:10(C2xC12)216,143

Non-split extensions G=N.Q with N=C32 and Q=C2xC12
extensionφ:Q→Aut NdρLabelID
C32.(C2xC12) = C2xC4x3- 1+2φ: C2xC12/C2xC4C3 ⊆ Aut C3272C3^2.(C2xC12)216,75
C32.2(C2xC12) = S3xC36φ: C2xC12/C12C2 ⊆ Aut C32722C3^2.2(C2xC12)216,47
C32.3(C2xC12) = Dic3xC18φ: C2xC12/C2xC6C2 ⊆ Aut C3272C3^2.3(C2xC12)216,56

׿
x
:
Z
F
o
wr
Q
<